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Goals

> Pattern-replacement description
> Written in original language
> Embedded in existing compilation tools

> Raising - rewrite complex patterns
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PAT Description

c {
dot ( N, xX, ix, *y,
( i =0; 1 < N; i++)
out += x[ixix] * y[ixiy];
}
1} = A
#include <cblas.h>

dot ( M,float *p,int ip, 1L *q,
out += cblas_sdot(M, p, ip, q, iq);

iy,

iq,

out){

out){




Background - TWIG

> Pattern matching for instruction selection
> Converts trees to strings

> Use automatons to match strings

> Matching the string we match the trees

> Inspiration for the algorithm



Background - TWIG
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Algorithm - Matching

> Compile input files to MLIR

> First step - Control Dependency Graph (CDG)
o Filter candidates by control structure

> Second step - Data Dependency Graph (DDG)
O Check candidate and pattern data-flow equality

> Is a Match? Then rewrite the input code



Toolchain
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Rewritten Code
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Toolchain

patterns.pgl

l

Macro substitutions

|

Permutations

|

Input source code

patterns.pat

l

Pattern matching

|

Replacement

|

Optimized code




Methodology - Usability

Running time (s)
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SMR running time (s)

Methodology - Input Scalability
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Methodology - Pattern Scalability

Automata states
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Methodology - Dialects Flexibility

Idiom
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A typical compiler flow relies on a uni-directional sequence of translation/optimization steps that lower the
program abstract representation, making it hard to preserve higher-level program information across each
transformation step. On the other hand, modern ISA extensions and hardware accelerators can benefit from
the compiler’s ability to detect and raise program idioms to acceleration instructions or optimized library
calls. Although recent works based on Multi-Level IR (MLIR) have been proposed for code raising, they rely
on specialized languages, piler recompilation, or in-depth dialect knowledge. This paper presents Source
Matching and Rewriting (SMR), a user-oriented source-code-based approach for MLIR idiom matching and
rewriting that does not require a compiler expert’s intervention. SMR uses a two-phase automaton-based
DAG-matching algorithm inspired by early work on tree-pattern matching. First, the idiom Control-Dependency
Graph (CDG) is matched against the program’s CDG to rule out code fragments that do not have a control-flow
structure similar to the desired idiom. Second, candidate code fragments from the previous phase have their
Data-Dependency Graphs (DDGs) constructed and matched against the idiom DDG. Experimental results show
that SMR can effectively match idioms from Fortran (FIR) and C (CIL) programs while raising them as BLAS
calls to improve performance. Additional experiments also show performance improvements when using SMR
to enable code replacement in areas like approximate computing and hardware acceleration.

CCS Concepts: « Theory of computation — Grammars and context-free languages; Pattern matching; »
Hardware — Emerging languages and compilers.

Additional Key Words and Phrases: idiom recognition, automata, MLIR, rewriting, hardware accelerators

ACM Reference Format:
Vinicius Espindola, Luciano Zago, Hervé Yviquel, and Guido Araujo. 2018. Source Matching and Rewriting for
MLIR Using String-Based Automata. 1, 1 (November 2018), 26 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Idiom recognition is a well-known and studied problem in computer science, which aims to
identify program fragments [5, 7, 23, 24, 32, 40]. Although idiom recognition has found a niche in
compiling technology, in areas like code generation (e.g., instruction selection) [2, 3, 20, 39], its
broad application is considerably constrained by how modern compilers work. A typical compiler
flow makes a series of translation passes that lowers the level of abstraction from source to machine
code, with the goal of optimizing the code at each level. One such example is the Clang/LLVM
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