Source-based
Matching and Rewriting

Guido Araujo

University of Campinas (Unicamp) %
R

Computing Institute (IC)
o
v

Workshop « Mar 8th, 2024
UNICAMP

Agenda

1. Goals

2. Background

3. Algorithm

4. Toolchain

5. Experiments

Goals

> Pattern-replacement description
> Written in original language
> Embedded in existing compilation tools

> Raising - rewrite complex patterns

10

11

PAT Description

c {
dot (N, xX, ix, *y,
(i =0; 1 < N; i++)
out += x[ixix] * y[ixiy];
}
1} = A
#include <cblas.h>

dot (M,float *p,int ip, 1L *q,
out += cblas_sdot(M, p, ip, q, iq);

iy,

iq,

out){

out){

Background - TWIG

> Pattern matching for instruction selection
> Converts trees to strings

> Use automatons to match strings

> Matching the string we match the trees

> Inspiration for the algorithm

Background - TWIG

tl:

\ /-
+ || r
1 2
/7 N\
r I
1|
+
1 2
O\
c r
ot U
+2il+1c
+2i1+2r

AN

t3:

Algorithm - Matching

> Compile input files to MLIR

> First step - Control Dependency Graph (CDG)
o Filter candidates by control structure

> Second step - Data Dependency Graph (DDG)
O Check candidate and pattern data-flow equality

> Is a Match? Then rewrite the input code

Toolchain

@ |

patterns.pat]

@ <<i)attems.pfa >

input.f90
l
Language MLIR Frontend
\/
@ input.mlir patterns.pfa
| |
Qg Input @ Load PFA &
Preprocessing Replacements
R
@ CDG Matching «—y
Candidates Shu DD
v Automata
DDG Matching 4—4
Matches
Y

>

Rewriting OJ(
15

Rewritten Code

e —
- ~

-
_—
i

\/
PAT
I
\2 v
idiom.f90 ﬂ (replacement.f90 ﬂ
I) |
Language MLIR Frontend
v v
idiom.mlir]J [replacement.mlir]
| I ’
\] \J)
Idiom Replacement
Preprocessing Preprocessing
v
Build Pattern Finite
Automata Replacements
lPFA
Y
Store PFA &
@ Replacements SMR
S 4
\ 4

\ 4
Postprocessing SMR
A I
/‘/ - ’L k\‘\
P e
(/ Optimized MLIR Input \]
Q Code //

Toolchain

patterns.pgl

l

Macro substitutions

|

Permutations

|

Input source code

patterns.pat

l

Pattern matching

|

Replacement

|

Optimized code

Methodology - Usability

Running time (s)

150 Jeooo e B © Flang-03 w1 1.2 . Flang s .
_ SMR+BLAS mssssm | Flang+SMR
120 e gFortran -03 s GO0 feeemeeemmeeemmeee ettt
0.8
0.6 _
0.4 E4m
| 02 E
: =
0.1 3%
=
-
0.08 g o
0.06 o
0.04 100
0.02
. 0 0
2mm 3mm gemm syrk atax bicg mvt 2mm 3mm gemm syrk Shay bicg mvt
Polybench benchmarks Polybench benchmarks
Polybench running time after blas replacement FIR compilation time with/without SMR+BLAS

10

SMR running time (s)

Methodology - Input Scalability

120

100

80

60

40

20

0

Darknet

* : : 318536
Cello : : S,
— FFmpeg —— ... ; e
Exploitdb ———

142153

17989
] 6485
100%

! I — i i i I i

60% 70% 80% 90%

Input lines

20% 30% 40% 50%

4 input programs against 95 patterns

SMR running time (ms)

6000

5000

4000

3000

2000

1000

.. Others

CDG
DDG

1 I I 1 1

1 |

10000 12000 14000 16000

Input lines

4000 6000 8000

Darknet breakout

11

Methodology - Pattern Scalability

Automata states

1000

900

300

700

600

500 |

400

300

200

100

0

I I | i i I | |

1000 2000 3000 4000 5000 6000 7000 S000

Patterns

SMR’'s automaton prefix merging

12

Methodology - Dialects Flexibility

Idiom

Cello [26]

Exploitdb [46]

Ffmpeg [16]

Hpgmg [1]

Nekrs [17]

saxpy

scopy

sdot

sgemm

scall

0o [ws [= | =| = | Darknet [40]

ddot

dgemm

dgemmyv

dscal

w»—-h.hw.hm.—._.’rotal

Total

Ol W =] W

D
Do

Matching with CIL and CBLAS idioms

13

ACM Transactions on Architecture and

Code Optimization

Source Matching and Rewriting for MLIR Using String-Based
Automata

VINICIUS ESPINDOLA, Institute of Computing - UNICAMP, Brazil
LUCIANO ZAGO, Institute of Computing - UNICAMP, Brazil
HERVE YVIQUEL, Institute of Computing - UNICAMP, Brazil
GUIDO ARAUJO, Institute of Computing - UNICAMP, Brazil

A typical compiler flow relies on a uni-directional sequence of translation/optimization steps that lower the
program abstract representation, making it hard to preserve higher-level program information across each
transformation step. On the other hand, modern ISA extensions and hardware accelerators can benefit from
the compiler’s ability to detect and raise program idioms to acceleration instructions or optimized library
calls. Although recent works based on Multi-Level IR (MLIR) have been proposed for code raising, they rely
on specialized languages, piler recompilation, or in-depth dialect knowledge. This paper presents Source
Matching and Rewriting (SMR), a user-oriented source-code-based approach for MLIR idiom matching and
rewriting that does not require a compiler expert’s intervention. SMR uses a two-phase automaton-based
DAG-matching algorithm inspired by early work on tree-pattern matching. First, the idiom Control-Dependency
Graph (CDG) is matched against the program’s CDG to rule out code fragments that do not have a control-flow
structure similar to the desired idiom. Second, candidate code fragments from the previous phase have their
Data-Dependency Graphs (DDGs) constructed and matched against the idiom DDG. Experimental results show
that SMR can effectively match idioms from Fortran (FIR) and C (CIL) programs while raising them as BLAS
calls to improve performance. Additional experiments also show performance improvements when using SMR
to enable code replacement in areas like approximate computing and hardware acceleration.

CCS Concepts: « Theory of computation — Grammars and context-free languages; Pattern matching; »
Hardware — Emerging languages and compilers.

Additional Key Words and Phrases: idiom recognition, automata, MLIR, rewriting, hardware accelerators

ACM Reference Format:
Vinicius Espindola, Luciano Zago, Hervé Yviquel, and Guido Araujo. 2018. Source Matching and Rewriting for
MLIR Using String-Based Automata. 1, 1 (November 2018), 26 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Idiom recognition is a well-known and studied problem in computer science, which aims to
identify program fragments [5, 7, 23, 24, 32, 40]. Although idiom recognition has found a niche in
compiling technology, in areas like code generation (e.g., instruction selection) [2, 3, 20, 39], its
broad application is considerably constrained by how modern compilers work. A typical compiler
flow makes a series of translation passes that lowers the level of abstraction from source to machine
code, with the goal of optimizing the code at each level. One such example is the Clang/LLVM

Authors’ addresses: Vinicius Espindola, Institute of Computing - UNICAMP, Campinas, SP, Brazil, v188115@dac.unicamp.br;

Luciano Zago, Institute of Computing - UNICAMP, C: i SP, Brazil, 1182835@dac.unicamp.br; Hervé Yviquel, Institute
of Computing - UNICAMP, Campinas, SP, Brazil, hyviquel icamp.br; Guido Araujo, Institute of Computing - UNICAMP,
Campinas, SP, Brazil, guids i br.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissi org,

® 2018 Association for Computing Machinery.

XXXX-XXXX/2018/11-ART $15.00

https://doi. org/XXXXXXX XXXXXXX

, Vol 1, No. 1, Article . Publication date: November 2018.

Vinicius Espindola, Luciano Zago, Hervé Yviquel, and
Guido Araujo. 2023. Source Matching and Rewriting for
MLIR Using String-Based Automata. ACM Trans.
Archit. Code Optim. 20, 2, Article 22 (June 2023), 26
pages. https://doi.org/10.1145/3571283

14

Thank you!

